Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Omega ; 9(3): 4050-4056, 2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38284038

RESUMO

Electrospun nanofibers were used to support palladium nanocubes, resulting in a highly active, stable, and reusable catalyst. The system proposed herein offers significant advantages compared to catalysts in the form of nanoparticles suspension. The porous, solvent permeable structure of the nanofiber mat ensures uniform and stable time distribution of palladium nanoparticles; preventing coalescence and allowing multiple use of the catalyst. The proposed cross-linked poly(vinyl alcohol) nanofiber mat loaded with Pd nanocubes during the nanofiber preparation step is a macroscopic structure of intrinsically nanostructural character of the catalyst that can be easily transferred between different solutions without compromising its effectiveness in consecutive cycles. Thus, obtained system was characterized with high catalytic activity as tested on a model example of 4-nitrophenol (4-NP) reduction by NaBH4 to 4-aminophenol (4-AP). It is shown that loading nanofibers with Pd nanocubes during electrospinning resulted in a significantly more stable system compared to surface modification of obtained nanofibers with nanocube suspension.

2.
Materials (Basel) ; 15(23)2022 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-36500201

RESUMO

The WO3 nanopores array was obtained by an anodization method in aqueous solution with addition of F- ions. Several factors affecting the final morphology of the samples were tested such as potential, time, and F- concentrations. The morphology of the formed nanopores arrays was examined by SEM microscopy. It was found that the optimal time of anodization process is in the range of 0.5-1 h. The nanopores size increased with the increasing potential. The XPS measurements do not show any contamination by F- on the surface, which is common for WOx samples formed by an anodization method. Such a layer was successfully modified by anisotropic gold trisoctahedral NPs of various sizes. The Au NPs were obtained by seed-mediated growth method. The shape and size of Au NPs was analysed by TEM microscopy and optical properties by UV-VIS spectroscopy. It was found that the WO3-Au platform has excellent SERS activity. The R6G molecules could be detected even in the range of 10-9 M.

3.
Spectrochim Acta A Mol Biomol Spectrosc ; 277: 121266, 2022 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-35452900

RESUMO

Nanostructures made of magnetic cores (Fe3O4) with many smaller plasmonic (Au) nanostructures attached were covered with a very thin layer of silica. The first example of the application of this type of material for surface-enhanced Raman scattering (SERS) measurements is presented. (Fe3O4@Au)@SiO2 nanoparticles turned out to be very efficient substrates for SERS measurements. Moreover, due to the nanomaterial's strong magnetic properties, it can be easily manipulated using a magnetic field, and it is therefore possible to form homogeneous layers (with no significant 'coffee-ring' effect) of (Fe3O4@Au)@SiO2 nanoparticles using a very simple procedure: depositing a drop of a sol of such nanoparticles and evaporating the solvent after placing the sample in a strong magnetic field. Synthesised (Fe3O4@Au)@SiO2 nanostructures have been used for the SERS detection of penicillin G in milk. Good quality SERS spectra of penicillin G were obtained even at a concentration of penicillin G in milk of 1 nmol/l - this means that the SERS detection of penicillin G in milk is possible at a concentration lower than the maximum residue limit of penicillin G in milk established by the European Commission. .


Assuntos
Nanopartículas Metálicas , Nanoestruturas , Compostos Férricos , Ouro/química , Fenômenos Magnéticos , Nanopartículas Metálicas/química , Nanoestruturas/química , Dióxido de Silício/química , Prata/química , Análise Espectral Raman
4.
Spectrochim Acta A Mol Biomol Spectrosc ; 275: 121183, 2022 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-35344854

RESUMO

The deposition of a layer of plasmonic metal on a surface of highly ordered nanostructured oxide is one of the important methods of preparation of substrates for surface-enhanced Raman scattering (SERS) measurements. In this contribution we describe formation of SERS substrates by the deposition of a gold layer on ordered ZrO2 nanotubes. The influence of various experimental parameters on the structure of formed composites and the achievable SERS enhancement factor has been analysed. Like commonly used SERS substrates formed by the deposition of plasmonic metals on TiO2 nanotubes, gold-covered ZrO2 nanotubes also could be used as reversible SERS platform after water rinsing: there is no any significant decrease in the SERS activity of the substrate even after 20 radiation-induced cleaning cycles. Moreover, SERS substrates formed on ZrO2 nanotubes are significantly more stable in strongly acidic media than the previously developed SERS substrates based on ordered TiO2 nanotubes.

5.
RSC Adv ; 11(5): 2575-2595, 2021 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-35424232

RESUMO

In this review article, various methods for the light-induced manipulation of plasmonic nanoobjects are described, and some sample applications of this process are presented. The methods of the photo-induced nanomanipulation analyzed include methods based on: the light-induced isomerization of some compounds attached to the surface of the manipulated object causing formation of electrostatic, host-guest or covalent bonds or other structural changes, the photo-response of a thermo-responsive material attached to the surface of the manipulated nanoparticles, and the photo-catalytic process enhanced by the coupled plasmons in manipulated nanoobjects. Sample applications of the process of the photo-aggregation of plasmonic nanosystems are also presented, including applications in surface-enhanced vibrational spectroscopies, catalysis, chemical analysis, biomedicine, and more. A detailed comparative analysis of the methods that have been applied so far for the light-induced manipulation of nanostructures may be useful for researchers planning to enter this fascinating field.

6.
RSC Adv ; 11(61): 38727-38738, 2021 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-35493210

RESUMO

The structural and chemical modification of TiO2 nanotubes (NTs) by the deposition of a well-controlled Au deposit was investigated using a combination of X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), Scanning Transmission Electron Microscopy (STEM), Raman measurements, UV-Vis spectroscopy and photoelectrochemical investigations. The fabrication of the materials focused on two important factors: the deposition of Au nanoparticles (NPs) in UHV (ultra high vacuum) conditions (1-2 × 10-8 mbar) on TiO2 nanotubes (NTs) having a diameter of ∼110 nm, and modifying the electronic interaction between the TiO2 NTs and Au nanoparticles (NPs) with an average diameter of about 5 nm through the synergistic effects of SMSI (Strong Metal Support Interaction) and LSPR (Local Surface Plasmon Resonance). Due to the formation of unique places in the form of "hot spots", the proposed nanostructures proved to be photoactive in the UV-Vis range, where a characteristic gold plasmonic peak was observed at a wavelength of 580 nm. The photocurrent density of Au deposited TiO2 NTs annealed at 650 °C was found to be much greater (14.7 µA cm-2) than the corresponding value (∼0.2 µA cm-2) for nanotubes in the as-received state. The IPCE (incident photon current efficiency) spectral evidence also indicates an enhancement of the photoconversion of TiO2 NTs due to Au NP deposition without any significant change in the band gap energy of the titanium dioxide (E g ∼3.0 eV). This suggests that a plasmon-induced resonant energy transfer (PRET) was the dominant effect responsible for the photoactivity of the obtained materials.

7.
ACS Omega ; 5(23): 13963-13972, 2020 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-32566863

RESUMO

Surface-enhanced Raman spectroscopy (SERS) substrates prepared by immobilizing silver cubic nanoparticles (Ag CNPs) on titanium dioxide nanotubes (TiO2 NTs) were used for investigations of the "coffee ring" (CR) effect and its impact on spatial reproducibility of measured Raman signals in comparison with flat surfaces (Ti and Si) where the CR effect is usually significant. The immobilization of nanoparticles from drops, which is a very simple technique, usually does not permit a homogeneous distribution of deposited NPs because there is significant accumulation of the material at the boundary of the drying area. Our proposed SERS substrates effectively reduced the CR effect through the use of well-ordered nanostructures where a smaller number of Ag CNPs were transferred to the boundary region. It was not only the surface morphology that was important but also the physicochemical properties of TiO2 NTs, such as wettability. The wettability of the prepared samples was determined by measuring the static water contact angle (WCA), and the chemical composition near the boundary of the drying area was studied using Auger electron spectroscopy. The morphology of the substrates obtained was characterized using scanning electron microscopy. Our studies showed that reducing the coffee ring effect increased the spatial reproducibility of the measured SERS signal in the area of the deposited CNPs. Therefore, the platforms obtained may be very useful in commercial SERS applications.

8.
Nanomaterials (Basel) ; 11(1)2020 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-33396325

RESUMO

The efficiency of the generation of Raman spectra by molecules adsorbed on some substrates (or placed at a very close distance to some substrates) may be many orders of magnitude larger than the efficiency of the generation of Raman spectra by molecules that are not adsorbed. This effect is called surface-enhanced Raman scattering (SERS). In the first SERS experiments, nanostructured plasmonic metals have been used as SERS-active materials. Later, other types of SERS-active materials have also been developed. In this review article, various SERS substrates formed on nanostructured non-metallic materials, including non-metallic nanostructured thin films or non-metallic nanoparticles covered by plasmonic metals and SERS-active nanomaterials that do not contain plasmonic metals, are described. Significant advances for many important applications of SERS spectroscopy of substrates based on nanostructured non-metallic materials allow us to predict a large increase in the significance of such nanomaterials in the near future. Some future perspectives on the application of SERS substrates utilizing nanostructured non-metallic materials are also presented.

9.
Spectrochim Acta A Mol Biomol Spectrosc ; 225: 117469, 2020 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-31450224

RESUMO

In this contribution we show that star-shaped gold nanoparticles and star-shaped nanostructures containing a gold core (Au@SiO2, Au@Ag, and Au@Ag@SiO2) can be used as very efficient, easy to produce and reproducible electromagnetic nanoresonators for the Raman analysis of surfaces, especially for shell-isolated nanoparticle-enhanced Raman spectroscopy (SHINERS) measurements. The "one pot" procedure used in this work for synthesizing star-shaped gold nanoparticles (a reduction of chloroauric anions by hydrogen peroxide in an alkaline solution) is one of the simplest procedures for synthesizing highly anisotropic plasmonic nanostructures containing many sharp apexes and edges. There is no need to purify the obtained samples of gold nanostars - under these conditions, the formation of nanoparticles having other shapes and significantly different sizes is neglected. Moreover, there is no need to purify the nanoparticles obtained from any surfactant, whereas such purification is usually required when other anisotropic gold nanoparticles are synthetized. We found that the gold nanostars obtained are about one order of magnitude more efficient as nanoresonators for carrying out Raman analysis of a model surface than the equivalent standard spherical nanostructures. We also studied the effect of the silica layer on the stability of Au@Ag star-shaped nanoparticles in contact with yeast cells.

10.
Molecules ; 24(24)2019 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-31817059

RESUMO

A sensitive and accurate identification of specific DNA fragments (usually containing a mutation) can influence clinical decisions. Standard methods routinely used for this type of detection are PCR (Polymerase Chain Reaction, and its modifications), and, less commonly, NGS (Next Generation Sequencing). However, these methods are quite complicated, requiring time-consuming, multi-stage sample preparation, and specially trained staff. Usually, it takes weeks for patients to obtain their results. Therefore, different DNA sensors are being intensively developed by many groups. One technique often used to obtain an analytical signal from DNA sensors is Raman spectroscopy. Its modification, surface-enhanced Raman spectroscopy (SERS), is especially useful for practical analytical applications due to its extra low limit of detection. SERS takes advantage of the strong increase in the efficiency of Raman signal generation caused by a local electric field enhancement near plasmonic (typically gold and silver) nanostructures. In this condensed review, we describe the most important types of SERS-based nanosensors for genetic studies and comment on their potential for becoming diagnostic tools.


Assuntos
Técnicas Biossensoriais , DNA/análise , Análise Espectral Raman , DNA/química , DNA/genética , Nanopartículas Metálicas/química , Mutação/genética , Conformação de Ácido Nucleico
11.
Front Chem ; 7: 410, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31214580

RESUMO

In 2010, Tian et al. reported the development of a new, relatively sensitive method of the chemical analysis of various surfaces, including buried interfaces (for example the surfaces of solid samples in a high-pressure gas or a liquid), which makes it possible to analyze various biological samples in situ. They called their method shell-isolated nanoparticle-enhanced Raman spectroscopy (SHINERS). SHINERS spectroscopy is a type of surface-enhanced Raman spectroscopy (SERS) in which an increase in the efficiency of the Raman scattering is induced by plasmonic nanoparticles acting as electromagnetic resonators that locally significantly enhance the electric field of the incident electromagnetic radiation. In the case of SHINERS measurements, the plasmonic nanoparticles are covered by a very thin transparent protective layer (formed, for example, from various oxides such as SiO2, MnO2, TiO2, or organic polymers) that does not significantly damp surface electromagnetic enhancement, but does separate the nanoparticles from direct contact with the probed material and keeps them from agglomerating. Preventing direct contact between the metal plasmonic structures and the analyzed samples is especially important when biological samples are investigated, because direct interaction between the metal nanoparticles and various biological molecules (e.g., peptides) may lead to a change in the structure of those biomolecules. In this mini-review, the state of the art of SHINERS spectroscopy is briefly described.

12.
Biosens Bioelectron ; 132: 326-332, 2019 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-30897539

RESUMO

An early and accurate diagnosis of a specific DNA mutations has a decisive role for effective treatment. Especially, when an immediate decision on treatment most needs to be made, the rapid and precise confirmation of clinical findings is vital. Herein, we show a new strategy for the gene mutation (BRAF c.1799T>A; p. V600E) identification using highly SERS-active and reproducible SERS substrate (photo-etched GaN covered with a thin layer of sputtered gold) and surface enhanced Raman scattering (SERS) spectroscopy. The detection is based on the conformation change (gauche → trans) of the alkanethiol linker modifying the capture DNA during the hybridization process. The value of the intensity ratio of the ν(C-S) bands of the trans and gauche conformer higher than 1.0 indicated the presence of mutation. The demonstrated new DNA SERS (bio)sensor is characterized by the low detection limit at the level of pg µL-1, wide analytical range from 6.75 pg µL-1 to 67.5 ng µL-1 and high selectivity. The proposed bioactive platforms, based on nanostructured GaN substrates modified with thiolated ssDNA (single stranded DNA) can be successfully used in the analysis of clinical samples.


Assuntos
Análise Mutacional de DNA/métodos , Mutação Puntual , Proteínas Proto-Oncogênicas B-raf/genética , Análise Espectral Raman/métodos , Técnicas Biossensoriais/métodos , Ouro/química , Humanos , Mutação , Neoplasias/genética , Hibridização de Ácido Nucleico/métodos , Propriedades de Superfície
13.
Photodiagnosis Photodyn Ther ; 26: 162-178, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30914390

RESUMO

In this review article we described the applications of various nanoparticles that can be used for photodynamic therapy (PDT), such as: plasmonic nanoparticles, quantum dots and upconversion nanoparticles. In comparison with typical organic photosensitizers such as hematoporphyrins, they exhibit higher photostability and resistance to enzymatic degradation, and hence, in some cases, they could replace organic photosensitizers in PDT therapy. It has also been found that the presence of plasmonic noble metal nanoparticles increases the efficiency of conjugated standard photosensitizers. Therefore, one can expect that, due to their very promising optical properties, plasmonic nanoparticles, plasmonic composites, and upconversion nanoconjugates will have a significant impact on the detection and treatment of cancer in the near future. Various methods of detecting the singlet oxygen produced are also reviewed.


Assuntos
Nanopartículas , Fotoquimioterapia , Oxigênio Singlete/metabolismo , Humanos
14.
RSC Adv ; 9(32): 18609-18618, 2019 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-35515242

RESUMO

In this contribution, we present a modification of the procedure for producing concave cubic gold (cc-Au) nanoparticles; this modification significantly increases the homogeneity of the product obtained. The synthesis of cc-Au is carried out by the slow growth of seed nanostructures in a solution containing chloroauric acid, silver nitrate, ascorbic acid and hexadecyltrimethylammonium chloride. We show that, when nanoparticles synthesized in a solution containing both chloroauric acid and copper chloride (with the molar ratio equal to ca. 10 : 1) are used as seeds (instead of seeds formed without the addition of copper), one can observe a significant increase in the homogeneity of the cc-Au nanostructures formed. The resulting cc-Au, and cc-Au@Ag nanoparticles (cc-Au covered by a nanometric layer of silver) as well, have been used as plasmonic cores in nanoresonators dedicated for shell-isolated nanoparticle-enhanced Raman spectroscopy (SHINERS). To our knowledge, the SHINERS nanoresonators produced in this work display a homogeneity that is significantly better than that of any anisotropic SHINERS nanostructures previously synthesized without the subsequent complex process of purifying the nanoparticles. Concave cubic nanoparticles were about 5 times more efficient as electromagnetic nanoresonators than spherical nanostructures of a similar size formed from the same material.

16.
Artigo em Inglês | MEDLINE | ID: mdl-29202354

RESUMO

One of the tools used for determining the composition of surfaces of various materials is shell-isolated nanoparticle-enhanced Raman spectroscopy (SHINERS). SHINERS is a modification of "standard" surface-enhanced Raman spectroscopy (SERS), in which, before Raman spectra are recorded, the surfaces analysed are covered with a layer of plasmonic nanoparticles protected by a very thin layer of a transparent dielectric. The plasmonic cores of the core-shell nanoparticles used in SHINERS measurements generate a local enhancement of the electric field of the incident electromagnetic radiation, whereas the transparent coatings prevent the metal cores from coming into direct contact with the material being analysed. In this contribution, we propose a new type of SHINERS nanoresonators that contain spiky, star-shaped metal cores (produced from a gold/silver alloy). These spiky, star-shaped Au-Ag nanoparticles have been covered by a layer of silica. The small radii of the ends of the tips of the spikes of these plasmonic nanostructures make it possible to generate a very large enhancement of the electromagnetic field there, with the result that such SHINERS nanoresonators are significantly more efficient than the standard semi-spherical nanostructures. The Au-Ag alloy nanoparticles were synthesised by the reduction of a solution containing silver nitrate and chloroauric acid by ascorbic acid. The final geometry of the nanostructures thus formed was controlled by changing the ratio between the concentrations of AuCl4- and Ag+ ions. The shape of the synthesised star-shaped Au-Ag nanoparticles does not change significantly during the two standard procedures for depositing a layer of silica (by the decomposition of sodium silicate or the decomposition of tetraethyl orthosilicate).

17.
Spectrochim Acta A Mol Biomol Spectrosc ; 182: 124-129, 2017 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-28411421

RESUMO

Deposition of plazmonic metal nanoparticles on nanostructured oxide templates is an important part in preparation and design of suitable substrates for surface-enhanced Raman scattering (SERS) measurements. In this contribution we analyze the influence of the Ag deposition methods (magnetron sputtering and evaporation in vacuum, which are often used interchangeably) on SERS activity of the resultant Ag-n/ZrO2/Zr composite samples fabricated. We found that deposition of the same amount of Ag (0.020mg/cm2) on the ZrO2 nanoporous layers using magnetron sputtering and evaporation in vacuum leads to formation of two different surface morphologies, which can be distinguished on the basis of high-resolution scanning electron microscopy (HR-SEM) measurements. Those differences distinctly affect SERS intensity measured for probe molecules: pyridine and sodium 2-mercaptoethanesulfonate. SERS substrates obtained using evaporation technique are ca. 1.5 times more efficient than substrates prepared using magnetron sputtering.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...